Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 172
1.
Biomed Khim ; 70(2): 99-108, 2024 Apr.
Article En | MEDLINE | ID: mdl-38711409

Platelet functional activity was assessed in healthy volunteers (HV, n=92), patients with stable angina pectoris (SA, n=42) and acute coronary syndrome (ACS, n=73), treated with acetylsalicylic acid (ASA) + clopidogrel and ASA + ticagrelor, respectively. In all HV and patients we have compared parameters of platelet aggregation (maximum light transmission and velocity, Tmax and Vmax) and parameters, characterizing exposure of platelet activation markers, evaluated by flow cytometry. HV platelets were activated by 10 µM, 1 µM TRAP, and 20 µM, 5 µM, 2.5 µM ADP; patient platelets were activated by 10 µM TRAP and by 20 µM and 5 µM ADP. Strong and significant correlations between the aggregation and flow cytometry parameters (the r correlation coefficient from 0.4 up to >0.6) most frequently were registered in HV platelet during activation by 1 µM TRAP and in SA patients during platelet activation by 20 µM and 5 µM ADP. However, in many other cases these correlations were rather weak (r < 0.3) and sometimes statistically insignificant. In HV the differences in PAC-1 binding parameters between platelets activated by 10 µM TRAP (the strongest agonist) and all ADP concentrations were negligible (≤ 10%), while CD62P binding (at all ADP concentrations) and LTA parameters for (5 µM and 2.5 µM ADP) were significantly lower (by 40-60%). Antiplatelet therapy in patients decreased all parameters as compared to HV, but to varying extents. For 10 µM TRAP the MFI index for PAC-1 binding (40-50% decrease) and for both ADP concentrations the Tmax values (60-85% decrease) appeared to be the most sensitive in comparison with the other parameters that decreased to a lesser extent. The data obtained indicate a possibility of inconsistency between different LTA and flow cytometry parameters in assessing platelet activity and efficacy of antiplatelet drugs.


Acute Coronary Syndrome , Aspirin , Blood Platelets , Clopidogrel , Flow Cytometry , Platelet Aggregation Inhibitors , Platelet Aggregation , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Male , Aspirin/pharmacology , Aspirin/therapeutic use , Female , Blood Platelets/drug effects , Blood Platelets/metabolism , Middle Aged , Clopidogrel/pharmacology , Aged , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/blood , Adult , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Platelet Function Tests/methods , Platelet Activation/drug effects , Angina, Stable/drug therapy , Angina, Stable/blood , Adenosine Diphosphate/pharmacology
2.
Int J Cardiol ; 406: 132073, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38643804

BACKGROUND: Platelet P2Y12 antagonist ticagrelor reduces cardiovascular mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets release proatherogenic and proinflammatory microRNAs, including miR-125a, miR-125b and miR-223, we hypothesized that the expression of these miRNAs is lower on ticagrelor, compared to clopidogrel. OBJECTIVES: We compared miR-125a, miR-125b and miR-223 expression in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS: After percutaneous coronary intervention on acetylsalicylic acid and clopidogrel, 60 patients with first AMI were randomized to switch to ticagrelor or to continue with clopidogrel. Plasma expression of miR-223, miR-125a-5p, miR-125b was measured using quantitative polymerase chain reaction at baseline and after 72 h and 6 months of treatment with ticagrelor or clopidogrel in patients and one in 30 healthy volunteers. Multiple electrode aggregometry using ADP test was used to determine platelet reactivity in response to P2Y12 inhibitors. RESULTS: Expression of miR-125b was higher in patients with AMI 72 h and 6 months, compared to healthy volunteers (p = 0.001), whereas expression of miR-125a-5p and miR-223 were comparable. In patients randomized to ticagrelor, expression of miR-125b decreased at 72 h (p = 0.007) and increased back to baseline at 6 months (p = 0.005). Expression of miR-125a-5p and miR-223 was not affected by the switch from clopidogrel to ticagrelor. CONCLUSIONS: Ticagrelor treatment leads to lower plasma expression of miR-125b after AMI, compared to clopidogrel. Higher expression of miR-125b might explain recurrent thrombotic events and worse clinical outcomes in patients treated with clopidogrel, compared to ticagrelor.


Clopidogrel , Down-Regulation , MicroRNAs , Ticagrelor , Humans , Clopidogrel/pharmacology , Clopidogrel/therapeutic use , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , MicroRNAs/blood , MicroRNAs/biosynthesis , MicroRNAs/genetics , Male , Female , Middle Aged , Aged , Down-Regulation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/blood , Myocardial Infarction/genetics , Percutaneous Coronary Intervention , Adenosine/analogs & derivatives , Adenosine/therapeutic use , Ticlopidine/analogs & derivatives , Ticlopidine/pharmacology , Ticlopidine/therapeutic use
3.
Nutrients ; 16(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38612954

BACKGROUND: Previous studies have suggested that platelets are associated with inflammation and steatosis and may play an important role in liver health. Therefore, we evaluated whether antiplatelet agents can improve metabolic disorder-related fatty liver disease (MASLD). METHODS: The mice used in the study were fed a high-fat-diet (HFD) and were stratified through liver biopsy at 18 weeks. A total of 22 mice with NAFLD activity scores (NAS) ≥ 4 were randomly divided into three groups (HFD-only, clopidogrel (CLO; 35 mg/kg/day), ticagrelor (TIC; 40 mg/kg/day) group). And then, they were fed a feed mixed with the respective drug for 15 weeks. Blood and tissue samples were collected and used in the study. RESULTS: The TIC group showed a significantly lower degree of NAS and steatosis than the HFD group (p = 0.0047), but no effect on the CLO group was observed. Hepatic lipogenesis markers' (SREBP1c, FAS, SCD1, and DGAT2) expression and endoplasmic reticulum (ER) stress markers (CHOP, Xbp1, and GRP78) only reduced significantly in the TIC treatment group. Inflammation genes (MCP1 and TNF-α) also decreased significantly in the TIC group, but not in the CLO group. Nile red staining intensity and hepatic lipogenesis markers were reduced significantly in HepG2 cells following TIC treatment. CONCLUSION: Ticagrelor attenuated NAS and hepatic steatosis in a MASLD mice model by attenuating lipogenesis and inflammation, but not in the CLO group.


Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Clopidogrel/pharmacology , Clopidogrel/therapeutic use , Ticagrelor/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Inflammation
4.
J Thromb Thrombolysis ; 57(4): 576-586, 2024 Apr.
Article En | MEDLINE | ID: mdl-38556576

Blood flow disorders are often the result of the non-physiological narrowing of blood arteries caused by atherosclerosis and thrombus. The blood then proceeds through rising-peak-decreasing phases as it passes through the narrow area. Although abnormally high shear is known to activate platelets, the shear process that platelets undergo in small arteries is complex. Thus, understanding how each shear phase affects platelet activation can be used to improve antiplatelet therapy and decrease the risk of side effects like bleeding. Blood samples were sheared (68.8 ms,5200 s-1) in vitro by the microfluidic technique, and platelet activation levels (P-selectin and integrin αIIbß3) and von Willebrand factor (vWF) binding to platelets were analyzed by flow cytometry. Post-stenosis platelet aggregation was dynamically detected using microfluidic technology. We studied TXA2, P2Y12-ADP, and integrin αIIbß3-fibrinogen receptor pathways by adding antiplatelet drugs, such as acetylsalicylic acid (ASA, an active ingredient of aspirin that inhibits platelet metabolism), ticagrelor (hinders platelet activation), and tirofiban (blocks integrin αIIbß3 receptor) in vitro, respectively, to determine platelet activation function mediated by transient non-physiological high shear rates. We demonstrated that platelets can be activated under transient pathological high shear rates. The shear rise and fall phases influenced shear-induced platelet activation by regulating the binding of vWF to platelets. The degree of platelet activation and aggregation increased with multiple shear rise and fall phases. ASA did not inhibit shear-mediated platelet activation, but ticagrelor and tirofiban effectively inhibited shear-mediated platelet activation. Our data demonstrated that the shear rise and fall phases play an important role in shear-mediated platelet activation and promote platelet activation and aggregation in a vWF-dependent manner. Blocking integrin αIIbß3 receptor and hindering P2Y12-ADP were beneficial to reducing shear-mediated platelet activation.


Platelet Glycoprotein GPIIb-IIIa Complex , von Willebrand Factor , Humans , Tirofiban , von Willebrand Factor/metabolism , Ticagrelor/pharmacology , Microfluidics , Platelet Activation , Platelet Aggregation , Blood Platelets , Aspirin/pharmacology
5.
Eur Heart J ; 45(17): 1553-1567, 2024 May 07.
Article En | MEDLINE | ID: mdl-38486376

BACKGROUND AND AIMS: The ecto-nucleoside triphosphate diphosphohydrolases of the CD39 family degrade ATP and ADP into AMP, which is converted into adenosine by the extracellular CD73/ecto-5-nucleotidase. This pathway has been explored in antithrombotic treatments but little in myocardial protection. We have investigated whether the administration of solCD39L3 (AZD3366) confers additional cardioprotection to that of ticagrelor alone in a pre-clinical model of myocardial infarction (MI). METHODS: Ticagrelor-treated pigs underwent balloon-induced MI (90 min) and, before reperfusion, received intravenously either vehicle, 1 mg/kg AZD3366 or 3 mg/kg AZD3366. All animals received ticagrelor twice daily for 42 days. A non-treated MI group was run as a control. Serial cardiac magnetic resonance (baseline, Day 3 and Day 42 post-MI), light transmittance aggregometry, bleeding time, and histological and molecular analyses were performed. RESULTS: Ticagrelor reduced oedema formation and infarct size at Day 3 post-MI vs. controls. A 3 mg/kg AZD3366 provided an additional 45% reduction in oedema and infarct size compared with ticagrelor and a 70% reduction vs. controls (P < .05). At Day 42, infarct size declined in all ticagrelor-administered pigs, particularly in 3 mg/kg AZD3366-treated pigs (P < .05). Left ventricular ejection fraction was diminished at Day 3 in placebo pigs and worsened at Day 42, whereas it remained unaltered in ticagrelor ± AZD3366-administered animals. Pigs administered with 3 mg/kg AZD3366 displayed higher left ventricular ejection fraction upon dobutamine stress at Day 3 and minimal dysfunctional segmental contraction at Day 42 (χ2P < .05 vs. all). Cardiac and systemic molecular readouts supported these benefits. Interestingly, AZD3366 abolished ADP-induced light transmittance aggregometry without affecting bleeding time. CONCLUSIONS: Infusion of AZD3366 on top of ticagrelor leads to enhanced cardioprotection compared with ticagrelor alone.


Apyrase , Myocardial Infarction , Ticagrelor , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Animals , Myocardial Infarction/drug therapy , Apyrase/metabolism , Swine , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Recombinant Proteins , Platelet Aggregation/drug effects , Male , Humans , Disease Models, Animal , Adenosine/analogs & derivatives , Adenosine/pharmacology , Antigens, CD
6.
Chem Biol Interact ; 392: 110924, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38401715

The aim of this study was to investigate the potential drug-drug interactions (DDIs) between ticagrelor and other drugs as well as their underlying mechanisms. Rat liver microsome (RLM) reaction system was used to screen potential DDIs in vitro, and ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect the levels of ticagrelor and AR-C124910XX, the main metabolite of ticagrelor. A total of 68 drugs were screened, 11 of which inhibited the production of AR-C124910XX to 20% or less, especially two flavonoids (myricetin and quercetin). The half-maximal inhibitory concentration (IC50) of myricetin on ticagrelor was 11.51 ± 0.28 µM in RLM and 17.96 ± 0.54 µM in human liver microsome (HLM). The IC50 of quercetin in inhibiting ticagrelor in RLM and HLM was 16.92 ± 0.49 µM and 60.15 ± 0.43 µM, respectively. They all inhibited the metabolism of ticagrelor through a mixed mechanism. In addition, Sprague-Dawley (SD) rats were used to study the interactions of ticagrelor with selected drugs in vivo. We found that the main pharmacokinetic parameters including AUC (0-t), AUC (0-∞) and Cmax of ticagrelor were significantly increased when ticagrelor was combined with these two flavonoids. Our results suggested that myricetin and quercetin of flavonoids both had significant effects on the metabolism of ticagrelor, providing reference data for the clinical individualized medication of ticagrelor.


Quercetin , Tandem Mass Spectrometry , Humans , Rats , Animals , Ticagrelor/pharmacology , Ticagrelor/metabolism , Quercetin/pharmacology , Chromatography, Liquid/methods , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods , Flavonoids/pharmacology , Flavonoids/metabolism , Microsomes, Liver/metabolism
7.
Biomed Pharmacother ; 172: 116209, 2024 Mar.
Article En | MEDLINE | ID: mdl-38308966

Myeloid-derived suppressor cells (MDSCs) are important participants after acute myocardial infarction (AMI), but the role of their different subtypes in AMI remains controversial. The anti-inflammatory effect of ticagrelor in AMI has been discovered. However, the detailed anti-inflammatory mechanism has not been fully demonstrated. In this study, we aimed to determine whether ticagrelor can regulate the differentiation of MDSCs into anti-inflammatory subgroups to exert anti-inflammatory effects after AMI. In vitro experiments revealed no difference in the mRNA and protein expression of P2Y12 receptors on MDSCs and macrophages. Ticagrelor promotes the differentiation of in vitro cultured MDSCs to monocytic-MDSCs (M-MDSCs). A mouse AMI model was established to investigate the anti-inflammatory effects of ticagrelor in vivo after AMI by interfering with the differentiation of MDSCs. On the first day after AMI, spleen-derived polymorphonuclear-MDSCs (PMN-MDSCs) were predominant in the circulation and infarcted heart. Ticagrelor increased the percentage of M-MDSCs in the circulation and infarcted heart of AMI mice in a dose-dependent manner, attenuated cardiac inflammation and increased cardiac contractile function. M-MDSC injection significantly decreased cardiac inflammation levels and improved cardiac function in splenectomized AMI mice compared with PMN-MDSC injection. These data point to a novel anti-inflammatory role for ticagrelor after AMI by interfering with the differentiation of MDSCs.


Heart Injuries , Myeloid-Derived Suppressor Cells , Myocardial Infarction , Humans , Animals , Mice , Ticagrelor/pharmacology , Myocardial Infarction/drug therapy , Disease Models, Animal , Anti-Inflammatory Agents , Inflammation
8.
PeerJ ; 12: e16613, 2024.
Article En | MEDLINE | ID: mdl-38188139

Pulmonary infection is highly prevalent in patients with acute myocardial infarction undergoing percutaneous coronary intervention. However, the potential mechanism is not well characterized. Myocardial ischemia-reperfusion injury (MIRI) induces acute lung injury (ALI) related to pulmonary infection and inflammation. Recent studies have shown that pyroptosis mediates ALI in several human respiratory diseases. It is not known whether MIRI induces pyroptosis in the lungs. Furthermore, ticagrelor is a clinically approved anti-platelet drug that reduces ALI and inhibits the expression levels of several pyroptosis-associated proteins, but the effects of ticagrelor on MIRI-induced ALI have not been reported. Therefore, we investigated whether ticagrelor alleviated ALI in the rat MIRI model, and its effects on pyroptosis in the lungs. Sprague-Dawley rats were randomly divided into four groups: control, MIRI, MIRI plus low ticagrelor (30 mg/kg), and MIRI plus high ticagrelor (100 mg/kg). Hematoxylin and Eosin (HE) staining was performed on the lung sections, and the HE scores were calculated to determine the extent of lung pathology. The wet-to-dry ratio of the lung tissues were also determined. The expression levels of pyroptosis-related proteins such as NLRP3, ASC, and Cleaved caspase-1 were estimated in the lung tissues using the western blot. ELISA was used to estimate the IL-1ß levels in the lungs. Immunohistochemistry was performed to determine the levels of MPO-positive neutrophils as well as the total NLRP3-positive and Cleaved caspase-1-positive areas in the lung tissues. The lung tissues from the MIRI group rats showed significantly higher HE score, wet-to-dry ratio, and the MPO-positive area compared to the control group, but these effects were attenuated by pre-treatment with ticagrelor. Furthermore, lung tissues of the MIRI group rats showed significantly higher expression levels of pyroptosis-associated proteins, including NLRP3 (2.1-fold, P < 0.05), ASC (3.0-fold, P < 0.01), and Cleaved caspase-1 (9.0-fold, P < 0.01). Pre-treatment with the high-dose of ticagrelor suppressed MIRI-induced upregulation of NLRP3 (0.46-fold, P < 0.05), ASC (0.64-fold, P < 0.01), and Cleaved caspase-1 (0.80-fold, P < 0.01). Immunohistochemistry results also confirmed that pre-treatment with ticagrelor suppressed MIRI-induced upregulation of pyroptosis in the lungs. In summary, our data demonstrated that MIRI induced ALI and upregulated pyroptosis in the rat lung tissues. Pre-treatment with ticagrelor attenuated these effects.


Acute Lung Injury , Myocardial Reperfusion Injury , Humans , Rats , Animals , Ticagrelor/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Rats, Sprague-Dawley , Acute Lung Injury/drug therapy , Caspase 1 , Eosine Yellowish-(YS) , Lung
9.
Reproduction ; 167(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38205973

In brief: Preterm birth is the leading cause of perinatal morbidity and mortality, and new therapies that delay preterm birth and improve neonatal outcomes are urgently needed. This study investigates whether ticagrelor inhibits uterine contractility and inflammation in preclinical in vitro, ex vivo (human) and in vivo (mouse) studies, to explore the potential of repurposing ticagrelor for the prevention of preterm birth. Abstract: Preterm birth remains a significant global health challenge, affecting approximately 10% of pregnancies and resulting in one million deaths globally every year. Tocolytic agents, used to manage preterm labour, have considerable limitations including lack of efficacy, and adverse side effects, emphasising the urgent need for innovative solutions. Here, we explore repurposing an antiplatelet cardioprotective drug, ticagrelor, as a potential treatment to prevent preterm birth. Ticagrelor has demonstrated pleiotropic actions beyond platelet inhibition, including relaxant effects on smooth muscle cells and anti-inflammatory effects in models of diabetes and sepsis. As preterm birth is underscored by inflammatory processes triggering uterine contractions, these actions position ticagrelor as an attractive candidate for prevention or delay of preterm birth. Utilising primary human myometrial tissue, human myometrial cells, and a mouse model of preterm birth, we investigated ticagrelor's potential as a safe and effective therapy for preterm birth. We showed that ticagrelor did not reduce the frequency or strength of spontaneous muscle contractions of ex vivo myometrial tissue nor did it reduce in vitro inflammation-induced contractility in myometrial cells. Additionally, ticagrelor did not exhibit the anticipated anti-inflammatory effects in myometrial cell culture experiments. In our mouse model of preterm birth, ticagrelor neither improved the preterm birth rate or fetal survival outcomes. Gene expression of pro-inflammatory cytokines and contraction-associated proteins in postpartum mouse uteri were unaltered by ticagrelor. In conclusion, ticagrelor is not a strong candidate to continue investigations in clinical trial for the treatment of preterm labour and prevention of preterm birth.


Obstetric Labor, Premature , Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Animals , Mice , Premature Birth/prevention & control , Premature Birth/metabolism , Ticagrelor/pharmacology , Ticagrelor/metabolism , Ticagrelor/therapeutic use , Obstetric Labor, Premature/prevention & control , Obstetric Labor, Premature/metabolism , Myometrium/metabolism , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology
10.
Br J Pharmacol ; 181(4): 515-531, 2024 02.
Article En | MEDLINE | ID: mdl-37771103

Inflammation is a complex pathophysiological process underlying many clinical conditions. Platelets contribute to the thrombo-inflammatory response. Platelet P2Y12 receptors amplify platelet activation, potentiating platelet aggregation, degranulation and shape change. The contents of platelet alpha granules, in particular, act directly on leucocytes, including mediating platelet-leucocyte aggregation and activation via platelet P-selectin. Much evidence for the role of platelet P2Y12 receptors in inflammation comes from studies using antagonists of these receptors, such as the thienopyridines clopidogrel and prasugrel, and the cyclopentyltriazolopyrimidine ticagrelor, in animal and human experimental models. These suggest that antagonism of P2Y12 receptors decreases markers of inflammation with some evidence that this reduces incidence of adverse clinical sequelae during inflammatory conditions. Interpretation is complicated by pleiotropic effects such as those of the thienopyridines on circulating leucocyte numbers and of ticagrelor on adenosine reuptake. The available evidence suggests that P2Y12 receptors are prominent mediators of inflammation and P2Y12 receptor antagonism as a potentially powerful strategy in a broad range of inflammatory conditions. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Platelet Aggregation Inhibitors , Purinergic P2Y Receptor Antagonists , Animals , Humans , Ticagrelor/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Blood Platelets , Inflammation/drug therapy , Platelet Aggregation , Prasugrel Hydrochloride/pharmacology , Thienopyridines/pharmacology , Receptors, Purinergic P2Y12
11.
J Cardiovasc Pharmacol ; 83(2): 173-182, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38032897

ABSTRACT: As the pathogenesis of arterial thrombosis often includes platelet adhesion and aggregation, antiplatelet agents are commonly used to prevent thromboembolic events. Here, a new microfluidic method without additional adhesion protein modification was developed to quantify the inhibitory effect of antiplatelet drugs on the adhesion and aggregation behavior of platelets on glass surfaces under physiological flow conditions. Polydimethylsiloxane-glass microfluidic chips were fabricated by soft photolithography. Blood samples from healthy volunteers or patients before and after taking antiplatelet drugs flowed through the microchannels at wall shear rates of 300 and 1500 second -1 , respectively. The time to reach 2.5% platelet aggregation surface coverage (Ti), surface coverage (A 150s ), and mean fluorescence intensity (F 150s ) were used as quantitative indicators. Aspirin (80 µM) prolonged Ti and reduced F 150s . Alprostadil, ticagrelor, eptifibatide, and tirofiban prolonged Ti and reduced A 150s and F 150s in a concentration-dependent manner, whereas high concentrations of alprostadil did not completely inhibit platelet aggregation. Aspirin combined with ticagrelor synergistically inhibited platelet adhesion and aggregation; GPIb-IX-von Willebrand factor inhibitors partially inhibited platelet aggregation, and the inhibition was more pronounced at 1500 than at 300 second -1 . Patient administration of aspirin or (and) clopidogrel inhibited platelet adhesion and aggregation on the glass surface under flow conditions. This technology is capable of distinguishing the pharmacological effects of various antiplatelet drugs on inhibition of platelet adhesion aggregation on glass surface under physiological flow conditions, which providing a new way to develop microfluidic platelet function detection method without additional adhesive protein modification for determining the inhibitory effects of antiplatelet drugs in the clinical setting.


Microfluidics , Platelet Aggregation Inhibitors , Humans , Platelet Aggregation Inhibitors/pharmacology , Ticagrelor/pharmacology , Alprostadil/metabolism , Alprostadil/pharmacology , von Willebrand Factor/metabolism , von Willebrand Factor/pharmacology , Blood Platelets , Platelet Aggregation , Aspirin/pharmacology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Platelet Glycoprotein GPIb-IX Complex/pharmacology
12.
Br J Pharmacol ; 181(1): 21-35, 2024 01.
Article En | MEDLINE | ID: mdl-37530222

BACKGROUND AND PURPOSE: Ticagrelor is labelled as a reversible, direct-acting platelet P2Y12 receptor (P2Y12 R) antagonist that is indicated clinically for the prevention of thrombotic events in patients with acute coronary syndrome (ACS). As with many antiplatelet drugs, ticagrelor therapy increases bleeding risk in patients, which may require platelet transfusion in emergency situations. The aim of this study was to further examine the reversibility of ticagrelor at the P2Y12 R. EXPERIMENTAL APPROACH: Studies were performed in human platelets, with P2Y12 R-stimulated GTPase activity and platelet aggregation assessed. Cell-based bioluminescence resonance energy transfer (BRET) assays were undertaken to assess G protein-subunit activation downstream of P2Y12 R activation. KEY RESULTS: Initial studies revealed that a range of P2Y12 R ligands, including ticagrelor, displayed inverse agonist activity at P2Y12 R. Only ticagrelor was resistant to washout and, in human platelet and cell-based assays, washing failed to reverse ticagrelor-dependent inhibition of ADP-stimulated P2Y12 R function. The P2Y12 R agonist 2MeSADP, which was also resistant to washout, was able to effectively compete with ticagrelor. In silico docking revealed that ticagrelor and 2MeSADP penetrated more deeply into the orthosteric binding pocket of the P2Y12 R than other P2Y12 R ligands. CONCLUSION AND IMPLICATIONS: Ticagrelor binding to P2Y12 R is prolonged and more akin to that of an irreversible antagonist, especially versus the endogenous P2Y12 R agonist ADP. This study highlights the potential clinical need for novel ticagrelor reversal strategies in patients with spontaneous major bleeding, and for bleeding associated with urgent invasive procedures.


Acute Coronary Syndrome , Diphosphates , Humans , Ticagrelor/pharmacology , Ticagrelor/metabolism , Ticagrelor/therapeutic use , Diphosphates/metabolism , Diphosphates/pharmacology , Diphosphates/therapeutic use , Adenosine/pharmacology , Drug Inverse Agonism , Purinergic P2Y Receptor Antagonists/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Adenosine Diphosphate/pharmacology , Adenosine Diphosphate/metabolism , Blood Platelets , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/complications , Receptors, Purinergic P2Y12/metabolism
13.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article En | MEDLINE | ID: mdl-38139379

Several studies have demonstrated that, beyond their antithrombotic effects, P2Y12 receptor inhibitors may provide additional off-target effects through different mechanisms. These effects range from the preservation of endothelial barrier function to the modulation of inflammation or stabilization of atherosclerotic plaques, with an impact on different cell types, including endothelial and immune cells. Many P2Y12 inhibitors have been developed, from ticlopidine, the first thienopyridine, to the more potent non-thienopyridine derivatives such as ticagrelor which may promote cardioprotective effects following myocardial infarction (MI) by inhibiting adenosine reuptake through sodium-independent equilibrative nucleoside transporter 1 (ENT1). Adenosine may affect different molecular pathways involved in cardiac fibrosis, such as the Wnt (wingless-type)/beta (ß)-catenin signaling. An early pro-fibrotic response of the epicardium and activation of cardiac fibroblasts with the involvement of Wnt1 (wingless-type family member 1)/ß-catenin, are critically required for preserving cardiac function after acute ischemic cardiac injury. This review discusses molecular signaling pathways involved in cardiac fibrosis post MI, focusing on the Wnt/ß-catenin pathway, and the off-target effect of P2Y12 receptor inhibition. A potential role of ticagrelor was speculated in the early modulation of cardiac fibrosis, thanks to its off-target effect.


Myocardial Infarction , Purinergic P2Y Receptor Antagonists , Humans , Ticagrelor/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , beta Catenin , Myocardial Infarction/metabolism , Adenosine , Pericardium/metabolism , Fibrosis
14.
ACS Appl Mater Interfaces ; 15(46): 53198-53216, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37942626

The increased risk of breast cancer metastasis is closely linked to the effects of platelets. Our previously light-switchable diphtheria toxin A fragment (DTA) gene system, known as the LightOn system, has demonstrated significant therapeutic potential; it lacks antimetastatic capabilities. In this study, we devised an innovative system by combining cell membrane fusion liposomes (CML) loaded with the light-switchable transgene DTA (pDTA) and a ticagrelor (Tig) prodrug. This innovative system, named the sequential rocket-mode bioactivating drug delivery system (pDTA-Tig@CML), aims to achieve targeted pDTA delivery while concurrently inhibiting platelet activity through the sequential release of Tig triggered by reactive oxygen species with the tumor microenvironment. In vitro investigations have indicated that pDTA-Tig@CML, with its ability to sequentially release Tig and pDTA, effectively suppresses platelet activity, resulting in improved therapeutic outcomes and the mitigation of platelet driven metastasis in breast cancer. Furthermore, pDTA-Tig@CML exhibits enhanced tumor aggregation and successfully restrains tumor growth and metastasis. It also reduces the levels of ADP, ATP, TGF-ß, and P-selectin both in vitro and in vivo, underscoring the advantages of combining the bioactivating Tig prodrug nanoplatform with the LightOn system. Consequently, pDTA-Tig@CML emerges as a promising light-switchable DTA transgene system, offering a novel bioactivating prodrug platform for breast cancer treatment.


Breast Neoplasms , Prodrugs , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Prodrugs/pharmacology , Prodrugs/therapeutic use , Ticagrelor/pharmacology , Cell Line, Tumor , Liposomes , Transgenes , Tumor Microenvironment , Melanoma, Cutaneous Malignant
15.
J Med Life ; 16(6): 941-947, 2023 Jun.
Article En | MEDLINE | ID: mdl-37675176

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. This study aimed to investigate the potential protective effect of the lungs in sepsis by modulating inflammatory and oxidative stress markers. Twenty-four adult male Swiss-albino mice, aged 8-12 weeks and weighing 20-30 g, were divided into four equal groups (n=6): sham (laparotomy only), CLP (laparotomy plus cecal ligation and puncture), vehicle (DMSO administered one hour before CLP), and Ticagrelor (50 mg/kg IP administered one hour before CLP). Tissue levels of pro-inflammatory and oxidative stress markers in the lung were assessed using ELISA. F2 isoprostane levels were significantly higher in the sepsis group (p<0.05) compared to the sham group, while Ticagrelor significantly decreased the inflammatory and oxidative stress markers compared to the sepsis group. All mice in the sepsis group had considerable (p=0.05) lung tissue damage, but Ticagrelor considerably decreased lung tissue injury (p=0.05). Furthermore, Ticagrelor was found to reduce tissue cytokine levels of the lung (IL-1, TNF a, IL-6, F2 isoprostane, GPR 17, MIF) in male mice during CLP-induced polymicrobial sepsis by modulation of pro-inflammatory and oxidative stress cascade signaling pathways.


Endotoxemia , Sepsis , Male , Animals , Mice , Endotoxemia/drug therapy , F2-Isoprostanes , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Lung
16.
J Thromb Haemost ; 21(11): 3236-3251, 2023 11.
Article En | MEDLINE | ID: mdl-37541591

BACKGROUND: Aspirin and platelet P2Y12 inhibitors, such as ticagrelor, suboptimally inhibit microvascular thrombosis during ST-elevation myocardial infarction. Glycoprotein (GP) IIb/IIIa inhibitors may further inhibit this but cause excessive bleeding. OBJECTIVES: We investigated whether combination of glenzocimab, a GPVI inhibitor, with aspirin and ticagrelor provides additional antithrombotic effects, as GPVI has a critical role in atherothrombosis but minimal involvement in hemostasis. METHODS: We investigated the effects of glenzocimab (monoclonal antibody Fab fragment) using blood from healthy donors and patients with acute coronary syndrome treated with aspirin and ticagrelor. Platelets were stimulated with multiple agonists, including atherosclerotic plaque, from patients undergoing carotid endarterectomy. RESULTS: Aspirin and ticagrelor partially inhibited atherosclerotic plaque-induced platelet aggregation by 48% compared with control (34 ± 3 vs 65 ± 4 U; P < .001). Plaque-induced platelet aggregation, adhesion, secretion, and activation were critically dependent on GPVI activation. Glenzocimab alone reduced plaque-induced aggregation by 75% compared with control (16 ± 4 vs 65 ± 4 U; P < .001) and by >95% when combined with aspirin and ticagrelor (3 ± 1 vs 65 ± 4 U; P < .001). Glenzocimab reduced platelet aggregation, adhesion, and thrombin generation when added to blood of aspirin- and ticagrelor-treated patients with acute coronary syndrome. Glenzocimab shared several antithrombotic effects with the GPIIb/IIIa inhibitor eptifibatide with less effect on general hemostasis assessed by rotational thromboelastometry. In a murine intravital model of ST-elevation myocardial infarction, genetic depletion of GPVI reduced microvascular thrombosis. CONCLUSION: Addition of glenzocimab to aspirin and ticagrelor enhances platelet inhibition via multiple mechanisms of atherothrombosis. Compared with a GPIIb/IIIa inhibitor, glenzocimab shares multiple antithrombotic effects, with less inhibition of mechanisms involved in general hemostasis.


Acute Coronary Syndrome , Plaque, Atherosclerotic , ST Elevation Myocardial Infarction , Thrombosis , Humans , Animals , Mice , Platelet Aggregation Inhibitors/pharmacology , Ticagrelor/pharmacology , Fibrinolytic Agents/adverse effects , Acute Coronary Syndrome/drug therapy , Platelet Activation , Aspirin/pharmacology , Platelet Glycoprotein GPIIb-IIIa Complex , Thrombosis/drug therapy , Thrombosis/prevention & control
17.
Biomolecules ; 13(7)2023 07 14.
Article En | MEDLINE | ID: mdl-37509160

Activated platelets are involved in blood coagulation by exposing phosphatidylserine (PS), which serves as a substrate for assembling coagulation complexes. Platelets accelerate fibrin formation and thrombin generation, two final reactions of the coagulation cascade. We investigated the effects of antiplatelet drugs on platelet impact in these reactions and platelet ability to expose PS. Washed human platelets were incubated with acetylsalicylic acid (ASA), ticagrelor, ASA in combination with ticagrelor, ruciromab (glycoprotein IIb-IIIa antagonist), or prostaglandin E1 (PGE1). Platelets were not activated or activated by collagen and sedimented in multiwell plates, and plasma was added after supernatant removal. Fibrin formation (clotting) was monitored in a recalcification assay by light absorbance and thrombin generation in a fluorogenic test. PS exposure was assessed by annexin V staining using flow cytometry. Ticagrelor (alone and in combination with ASA), ruciromab, and PGE1, but not ASA, prolonged the lag phase and decreased the maximum rate of plasma clotting and decreased the peak and maximum rate of thrombin generation. Inhibition was observed when platelets were not treated with exogenous agonists (activation by endogenous thrombin) and pretreated with collagen. Ticagrelor (alone and in combination with ASA), ruciromab, and PGE1, but not ASA, decreased PS exposure on washed platelets activated by thrombin and by thrombin + collagen. PS exposure on activated platelets in whole blood was lower in patients with acute coronary syndrome receiving ticagrelor + ASA in comparison with donors free of medications. These results indicate that antiplatelet drugs are able to suppress platelet coagulation activity not only in vitro but also after administration to patients.


Blood Platelets , Platelet Aggregation Inhibitors , Humans , Platelet Aggregation Inhibitors/pharmacology , Ticagrelor/pharmacology , Thrombin/pharmacology , Alprostadil/pharmacology , Blood Coagulation , Aspirin/pharmacology , Fibrin/pharmacology , Collagen/pharmacology
18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(2): 257-263, 2023 Apr.
Article Zh | MEDLINE | ID: mdl-37157073

Objective To examine the antiplatelet effect of ticagrelor by microfluidic chip and flow cytometry under shear stress in vitro. Methods Microfluidic chip was used to examine the effect of ticagrelor on platelet aggregation at the shear rates of 300/s and 1500/s.We adopted the surface coverage of platelet aggregation to calculate the half inhibition rate of ticagrelor.The inhibitory effect of ticagrelor on ADP-induced platelet aggregation was verified by optical turbidimetry.Microfluidic chip was used to construct an in vitro vascular stenosis model,with which the platelet reactivity under high shear rate was determined.Furthermore,the effect of ticagrelor on the expression of fibrinogen receptor (PAC-1) and P-selectin (CD62P) on platelet membrane activated by high shear rate was analyzed by flow cytometry. Results At the shear rates of 300/s and 1500/s,ticagrelor inhibited platelet aggregation in a concentration-dependent manner,and the inhibition at 300/s was stronger than that at 1500/s (both P<0.001).Ticagrelor at a concentration ≥4 µmol/L almost completely inhibited platelet aggregation.The inhibition of ADP-induced platelet aggregation by ticagrelor was similar to the results under flow conditions and also in a concentration-dependent manner.Ticagrelor inhibited the expression of PAC-1 and CD62P. Conclusion We employed microfluidic chip to analyze platelet aggregation and flow cytometry to detect platelet activation,which can reveal the responses of different patients to ticagrelor.


Microfluidics , Platelet Aggregation Inhibitors , Humans , Ticagrelor/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Flow Cytometry/methods , Platelet Aggregation
19.
Clin Hemorheol Microcirc ; 84(2): 125-139, 2023.
Article En | MEDLINE | ID: mdl-37066902

Circulating platelets are sometimes exposed to high shear rate environments due to vascular stenosis, and the effect of transiently elevated pathological high shear rates on platelet activation and aggregation function has not been clarified. The aim of this study was to investigate the effect of pathological high shear rate (8302s-1) exposure time (3.16-25.3 ms) on platelet activation and aggregation function. In addition, by adding active ingredients of antiplatelet drugs such as ASA (an active ingredient of aspirin), Ticagrelor, Tirofiban and GP1BA (platelet membrane protein GPIb inhibitor) in vitro, we studied TXA2, P2Y12-ADP, GPIIb/IIIa-fibrinogen and GPIb /IX/V-vWF receptor pathways to determine platelet activation function mediated by pathological high shear rate. In this study, we designed a set of microfluidic chips with stenosis lengths of 0.5 mm, 1 mm, 2 mm, 3 mm, and 4 mm, all with 80% stenosis, to generate pathological high shear forces that can act at different times. The whole blood flowing through the microchannels was collected by perfusion of sodium citrate anticoagulated whole blood at a physiological arterial shear rate (1500 s-1), and the expression levels of platelet surface activation markers (P-selectin and GP IIb/IIIa) and the degree of platelet aggregation were analyzed by flow cytometry; platelet aggregation patterns were observed by microscopic examination of blood smears. The results showed that shearing significantly increased platelet activation and aggregation levels compared to un-sheared whole blood, and the activation and aggregation levels increased with increasing duration of pathological high shear rate. In vitro inhibition studies showed that ASA barely inhibited the expression of P-selectin and PAC-1 on the platelet surface; Ticagrelor effectively inhibited the expression of both P-selectin and PAC-1; Tirofiban significantly inhibited the expression of PAC-1 on the platelet surface and slightly inhibited the expression of P-selectin; GP1BA significantly inhibited the expression of both. Our results suggest that transient pathological high shear rate (8302s-1) exposure can induce platelet activation in a time-dependent manner; however, the mechanism is more complex and may be due to the following reasons: transient elevated pathological high shear rate activates platelets through the GPIb/IX/V-vWF receptor pathway, and after platelet activation, its surface membrane protein GPIIb/IIIa receptors activate platelets through fibrinogen to form platelet-platelet aggregates, and further activation of active substances such as ADP and TXA2 released by platelet alpha particles, which contribute to the formation of irreversible platelet aggregation.


P-Selectin , Platelet Activation , Humans , P-Selectin/pharmacology , Tirofiban/pharmacology , Ticagrelor/pharmacology , Constriction, Pathologic , Platelet Aggregation/physiology , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology , Blood Platelets/metabolism , Platelet Aggregation Inhibitors/pharmacology , Aspirin/pharmacology , Fibrinogen , von Willebrand Factor/metabolism , von Willebrand Factor/pharmacology
20.
Heart Lung Circ ; 32(6): 702-708, 2023 Jun.
Article En | MEDLINE | ID: mdl-37045652

BACKGROUND: The pleiotropic action of ticagrelor, with effects in addition to platelet inhibition, has been shown to improve endothelial function in patients with coronary artery disease. These positive effects are possibly adenosine mediated. This study investigated the association of ticagrelor therapy and coronary artery flow reserve in survivors of myocardial infarction (MI). METHODS: This was an exploratory, cross-sectional, open substudy of PROFLOW. High-risk individuals with a history of MI were identified. Coronary flow reserve (CFR) was measured non-invasively in the left anterior descending artery using transthoracic Doppler echocardiography. Coronary flow velocity was measured at rest and at maximal flow after induction of hyperaemia by intravenous infusion of adenosine at 140 µg/kg/min. Patients receiving ticagrelor (n=75) were compared with those not receiving ticagrelor (n=506), using simple and multiple linear regression models. Most patients in both groups were treated with aspirin (97% in the ticagrelor and 94% in the non-ticagrelor group). Adjustment for traditional risk factors was conducted. RESULTS: The mean age at study inclusion was 68.5±6.8 years, and most patients were male (81.8%). The simple linear regression analysis showed ticagrelor treatment to be significantly associated with increased CFR: ticagrelor 2.95±0.76 (mean±SD), non-ticagrelor 2.70±0.77, (coefficient 0.25; 95% CI 0.063-0.438; p=0.009). This association was significant in two of the three multiple linear regression models with increasing numbers of variables: Model 1 (0.28; 0.06-0.50; p=0.014), Model 2 (0.26; 0.03-0.48; p=0.025), and borderline significant in Model 3 (0.21; -0.01 to 0.43; p=0.058). CONCLUSIONS: Ticagrelor treatment was associated with increased CFR in this high-risk population. Increased CFR may be a clinically important therapeutic effect of ticagrelor in addition to platelet inhibition.


Myocardial Infarction , Humans , Male , Female , Ticagrelor/pharmacology , Cross-Sectional Studies , Adenosine/pharmacology , Survivors , Coronary Circulation/physiology
...